Skip to main content

Taming the Flow: Throttling in Golang with Semaphore Magic

·1285 words·7 mins· loading · loading ·
Golang Throttling Rate Limiting
Table of Contents

Introduction
#

In today’s digital world, APIs serve as the core of modern applications, allowing seamless data exchange and interaction. However, even the most robust and scalable API servers can succumb to the humongous number of incoming requests. Picture this scenario: your finely crafted API server, designed to handle thousands of requests per second, suddenly experiences an unprecedented spike in traffic. Within moments, your server starts to struggle under the weight of the overwhelming load, its response times slowing to a crawl, and in the worst-case scenario, a complete outage occurs.

In order to maintain stability and enhance user experience, developers often encounter two essential techniques: throttling and rate limiting. Though distinct in their mechanisms, both throttling and rate limiting play crucial roles. Throttling focuses on controlling the rate at which requests are processed, while rate limiting sets predefined boundaries on the number of requests a client can make within a given time frame.

While rate limiting is an effective strategy to control the overall request rate and prevent abusive behavior, it falls short when it comes to handling sudden usage spikes. By leveraging a semaphore-based throttling mechanism, we can intelligently regulate the flow of incoming requests, mitigating the impact of usage spikes and maintaining a responsive API.

Throttling with semaphores
#

First, let’s define what is a semaphore. A semaphore is a synchronization construct used in concurrent programming to control access to a shared resource. It acts as a counter that manages the number of threads or goroutines allowed to access the resource simultaneously. When a thread or goroutine wants to access the shared resource, it must acquire a semaphore token. If the token is available, the thread is allowed access; otherwise, it waits until a token becomes available when another thread releases it.

A simple way to implement a semaphore relies on buffered channel. A buffered channel in Golang is a type of channel that allows a specific number of elements to be stored in it before blocking the sending operation. There are two ways to implement semaphores with buffered channels, with opposite setups: either you start with an empty channel and you push your token in the channel, or you start with a filled channel and you retrieve tokens from it. In this article, we will explore the latter, because it provides a non-blocking and tentative way to acquire a token.

Setup and tear down
#

The following code exposes the Semaphore structure, its setup and tear down.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
type token struct{}

// Semaphore represents a structure able to limit simultaneous access to a shared resource.
type Semaphore struct {
    c chan token
}

// NewSemaphore creates a new semaphore that allows size simultaneous operations.
func NewSemaphore(size int) *Semaphore {
    s := &Semaphore{
        c: make(chan token, size),
    }

    // Fill the channel with tokens
    for i := 0; i < size; i++ {
        s.c <- token{}
    }

    return s
}

// TearDown tears down a semaphore.
// If there is any ongoing operation, this will wait for them.
func (s *Semaphore) TearDown() {
    for i := 0; i < cap(s.c); i++ {
        <-s.c
    }
}

Blocking Acquire
#

The Acquire method lets the user request for a semaphore token in a blocking way: if all the tokens are currently held by other goroutines, it will wait for one available. When the operation is finished, the token must be released with the Release method. One possible improvement would be to acquire/release multipe tokens, like proposed in the x/sync/semaphore package.

1
2
3
4
5
6
7
8
9
// Acquire acquires a semaphore token, blocking until resources are available.
func (s *Semaphore) Acquire() {
    <-s.c
}

// Release releases a semaphore token.
func (s *Semaphore) Release() {
    s.c <- token{}
}

Non-blocking Acquire
#

As mentioned before, we chose to used a pre-filled channel. This lets us use select on our channel, that allows us to try to acquire a semaphore token without blocking. On success, similarly to Acquire, the token must be released with the Release method.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
// TryAcquire tries to acquire a semaphore token, without blocking.
// On success, returns true. On failure, returns false and leaves the semaphore unchanged.
func (s *Semaphore) TryAcquire() bool {
    select {
    case <-s.c:
        return true
    default:
        return false
    }
}

Examples
#

Worker pool
#

The initial scenario we’ll explore is quite common: you’re faced with a collection of N tasks that need processing. Rather than handling them sequentially, you aim to process them concurrently, allowing at most M tasks to run simultaneously. Also, note that by using this semaphore-based mechanism, we avoid traditional worker pool implementation with idling goroutines.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
package main

import "fmt"

func main() {
	maxWorkers := 10
	out := make([]uint64, 32)

	// Creating the semaphore
	sem := NewSemaphore(maxWorkers)

	// Launch the factorial operation using up to maxWorkers goroutines at a time.
	for i := range out {
		// Acquire a semaphore token (or wait for one available)
		sem.Acquire()

		go func(i int) {
			out[i] = factorial(i)

			// Release a semaphore token
			sem.Release()
		}(i)
	}

	// Wait for the workers to finish their job
	sem.TearDown()

	fmt.Println(out)
}

func factorial(n int) uint64 {
	if n > 0 {
		return uint64(n) * factorial(n-1)
	}
	return 1
}

Best-effort / Degraded mode
#

The second use-case involves an application that exposes an API for resource-intensive operations. In this particular situation, if the application experiences a sudden surge in requests, utilizing a worker pool might not be viable. The requests would start queuing up, potentially leading to a spike in memory consumption that could potentially crash the application. In this case, the goal is to have the application permit a specific number of concurrent operations and gracefully decline any additional requests when fully occupied. Additionally, we would prefer to notify the client to return at a later time (perhaps with an HTTP code 503 Service Unavailable, for instance).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package main

import (
	"net/http"
	"time"
)

func main() {
	sem := NewSemaphore(10)

	resourceIntensiveOperation := func() {
		time.Sleep(time.Second)
	}

	opHandler := func(w http.ResponseWriter, req *http.Request) {
		// Try to acquire a semaphore token
		ok := sem.TryAcquire()
		if !ok {
			w.WriteHeader(http.StatusServiceUnavailable)
			return
		}

		// Token acquired, do the resource intensive operation and release a token after
		resourceIntensiveOperation()
		sem.Release()
	}

	// Register the endpoint
	http.HandleFunc("/op", opHandler)

	// Run the HTTP server
	http.ListenAndServe(":8080", nil)
}

Conclusion
#

In the world of concurrent programming, effective throttling can make the difference between a robust application and one that struggles under high loads. Through the utilization of semaphores and channels in Go, we’ve uncovered an elegant approach to managing task execution. Possible improvements include the acquisition/release of multiple tokens at the same time, or using a context.Context in those operations. By carefully regulating resource access, we prevent overutilization and maintain steady performance. This not only safeguards our applications from potential crashes but also positions them to handle surges in traffic with resilience and grace.

Here is a GitHub Gist with the semaphore implementation and the worker pool example.

See also
#

Damien Riquet
Author
Damien Riquet
PhD | Lead Research Engineer at Vade / Hornetsecurity